When Predictions Fail: Crash Course Statistics #43
TLDRThe video discusses the challenges of making accurate predictions in three areas: financial markets, earthquakes, and elections. It examines why experts failed to predict the 2008 financial crisis and 2016 election, attributable to flawed models that left out key factors. Accurate earthquake prediction remains elusive due to complexity and lack of long-term data. The video stresses that even quality prediction models yield uncertainty, and low-probability events will still occasionally occur. It concludes that recognizing the limitations of predictions is as vital as striving to improve them.
Takeaways
- š Prediction is useful for understanding the world and planning for the future, but predictions are still just educated guesses based on available information.
- š® The 2008 financial crisis was worsened by overestimating the independence of loan failures and most economists failing to predict the crisis.
- š Accurately predicting earthquakes requires knowing the location, magnitude and timing, which is currently very difficult.
- š Earthquake forecasting focuses on estimated probabilities over time rather than exact predictions.
- š² The 2016 US presidential election surprised many as predictions had put Trump's chances very low.
- š¤ Low probability does not equal impossibility - unlikely events can and do happen.
- š§ Election prediction errors may have stemmed from biases in polling data and overweighing some respondents.
- š Prediction requires large amounts of accurate, unbiased data and models that account for all important variables.
- š¤Ø We should keep trying to improve predictions but also recognize what we cannot accurately predict.
- š Knowing the limits of prediction can be as valuable as making accurate predictions.
Q & A
What three things are needed to accurately predict an earthquake?
-To accurately predict an earthquake you would need three pieces of information: its location, magnitude, and time.
Why was it hard for economists to predict the 2008 financial crisis?
-Economists struggled to predict the 2008 financial crisis for reasons like: overestimating the independence of loan failures, not accounting for irrational human behavior, and models that underplayed the role of banks.
What is the difference between earthquake forecasting and earthquake prediction?
-Earthquake forecasting focuses on the probabilities of earthquakes over longer periods of time and can help predict likely effects and damage. Earthquake prediction tries to specify the exact location, magnitude and timing of an earthquake.
What poll biases may have contributed to underestimating Donald Trump's chances in 2016?
-Biases like over-representing college-educated voters, who tended to support Clinton, and under-representing less educated voters, who tended to support Trump, may have contributed to underestimating his chances.
What does it mean when a prediction says there is a 1 in 100 chance of something happening?
-A 1 in 100 chance means that, statistically, the event is expected to happen 1 out of every 100 times. So it is unlikely but not impossible.
How did the incorrect assumption about loan failure independence contribute to the financial crisis?
-Banks assumed that the failure of one mortgage loan would be independent from others failing. But when the housing market declined, many loans started failing at the same time.
Why can unlikely events still happen even with good prediction models?
-Even good predictions have margins of error and communicate the chance of various outcomes. So a low probability does not make something impossible - unlikely events can still occasionally occur.
What two things are needed to make accurate predictions?
-To make accurate predictions, you need good, unbiased data in large quantities, and an accurate model that accounts for the most important variables.
What value is there in knowing what we cannot accurately predict?
-There is value in recognizing our limitations, so we don't rely too heavily on inaccurate predictions. Knowing what we cannot predict well helps us focus our efforts.
What percentage chance did Nate Silver's model give Trump of winning the 2016 election?
-Nate Silver's FiveThirtyEight model gave Donald Trump about a 3 in 10 chance or 30% chance of winning the 2016 election, much higher than some other models.
Outlines
šŗ Intro to Predictions and Models
This first paragraph serves as an introduction to the video's focus on using statistics to make predictions about the future. It mentions different prediction examples like sports outcomes and stock performance. The paragraph also notes that examining past failed predictions can provide insights into how to improve models.
š¦ Banks and the 2008 Financial Crisis
This paragraph examines two issues related to predictions and the 2008 financial crisis: 1) overestimating the independence of loan failures, and 2) economists not foreseeing the crisis. It provides background on risky lending practices and the mistaken assumption that mortgage defaults would be independent events. The paragraph then discusses how prevailing economic models failed to predict the crisis and recession that followed.
Mindmap
Keywords
š”prediction
š”margins of error
š”low probability events
š”non-response bias
š”correlation vs causation
š”outliers
š”black swan events
š”confirmation bias
š”unknown unknowns
š”hindsight bias
Highlights
Prediction is a huge part of how modern statistical analysis is used, and itās helped us make improvements to our lives. Big AND small.
Many investors overestimated the independence of loan failures. They didnāt take into account that if the then-overvalued housing market and subsequently the economy began to crumble, the probability of loans going unpaid would shoot way up.
There was a global recession that most economistsā models hadnāt predicted.
Prediction depends a lot on whether or not you have enough data available. But it also depends on what your model deems as āimportant.ā
Weāre not bad at earthquake forecasting even if we struggle with accurate earthquake prediction.
To predict a magnitude 9 earthquake, weād need to look at data on other similar earthquakes. But there just isnāt that much out there.
Itās possible for predictions to fail without models being bad.
If a meticulously curated prediction gives a 1 in 100 chance for a candidate to win, and that candidate wins, it doesnāt mean that the prediction was wrong.
Many who have done post-mortems on the 2016 election polls and predictions attribute some blame to biases in the polls themselves.
While we shouldnāt stop trying to make good predictions, thereās wisdom in recognizing that we wonāt always be able to get it right.
First, we need good, accurate, and unbiased data. And lots of it.
And second, we need a good model. One that takes into account all the important variables.
Thereās great value in knowing what we can and canāt predict.
Knowing what we canāt accurately predict may be just as important as making accurate predictions.
Making good predictions is hard. And even good predictions can be hard to interpret.
Transcripts
5.0 / 5 (0 votes)
Thanks for rating: