Global renewables: Pioneering the energy transition | DW Documentary

DW Documentary
1 Dec 202342:26
EducationalLearning
32 Likes 10 Comments

TLDRAs climate change accelerates, cities and countries around the world are transitioning to renewable energy and building interconnected green power grids. Researchers are developing artificial photosynthesis to mimic nature's process of turning sunlight into energy. Hydrogen produced from renewable electricity has potential as an energy storage medium. A circular economy aims to maximize efficiency by reusing materials and energy multiple times in integrated systems. Despite progress, scaling green tech solutions globally remains a challenge requiring collaboration between governments, industries and scientists.

Takeaways
  • 😀 Cities can lead the way in the green energy transition by changing policies and infrastructure
  • 😮‍💨 The shift to renewable energy requires a change in culture and mentality, not just technology
  • 🔋 Creating local circular energy economies optimizes renewable sources like sun, wind and waste
  • 🌱 Buildings can be part of green solution by reusing materials and producing renewable energy
  • 🚢 Interconnecting countries via undersea cables enables sharing of offshore wind and hydropower
  • 💡 Hydrogen production and synthetic fuels offer ways to store and transport renewable energy
  • 🌡️ Artificial photosynthesis mimics plants, using sun to produce renewable hydrogen from water
  • 🔬 Accelerating materials research for storage and efficiency is key to rapid transition
  • 🤝 Global collaboration between labs, business and government is essential to scale solutions
  • ⏳ There is urgency to implement scientific innovations before it's too late
Q & A
  • What percentage of the world's population currently lives in urban areas, and what is the projected percentage by 2050?

    -Currently more than 50% of the world's population lives in urban areas. By 2050, it could be nearly 70%.

  • What were some of the key steps Lancaster, California took to transform into a green city?

    -Lancaster installed solar panels on municipal buildings, used the electricity savings to fund residential solar panels, mandated solar panels on new buildings, and used excess solar electricity to produce hydrogen for public transportation.

  • How did the energy transition help improve Lancaster's economy?

    -When Lancaster began its energy transition in 2009, unemployment was at 17%. By 2023 it had dropped to around 6% as green energy and hydrogen production expanded.

  • What are some of the goals Oslo, Norway has set to reduce emissions and become more sustainable?

    -Oslo aims to reduce CO2 emissions to zero by 2030. It is considered the world capital of e-mobility and has made progress on carbon-neutral construction and heating.

  • How can construction be made more sustainable according to Hege Schøyen Dillner?

    -Hege recommends reusing materials from old buildings in new construction whenever possible, using recycled materials, building efficiently with less materials, and designing buildings to be part of the green energy solution.

  • How does the North Sea wind power grid help European countries transition to renewable energy?

    -The international grid allows countries to share excess green energy from offshore wind farms and hydropower. This brings energy security through collaboration.

  • How can hydrogen enable large-scale energy storage?

    -Hydrogen can be produced through electrolysis using renewable electricity and then stored at scale. It can also be converted to e-fuels by combining with CO2.

  • What is artificial photosynthesis and why is it significant?

    -Artificial photosynthesis uses engineered materials to mimic how plants use sunlight, water and CO2 to produce fuels. If scaled up it could make hydrogen cheaper than any fuel.

  • What role do semiconductors play in developing new energy technologies?

    -Semiconductors are critical components of solar cells, electrolyzers, batteries and many other advanced technologies needed for the energy transition.

  • What is still needed to successfully transform the global energy system?

    -Many scientific and technological innovations must still be scaled up and implemented widely. Cross-disciplinary collaboration will be key to deploying solutions rapidly enough.

Outlines
00:00
😀 Stadt gegen Land - die Stadt der Zukunft

Mehr als die Hälfte der Weltbevölkerung lebt heute in Städten. Bis 2050 könnte der Anteil auf 70% steigen. Großstädte haben einen hohen Bedarf an Wasser, Lebensmitteln und Energie. Dies stellt eine große Herausforderung dar, da die Ressourcen knapp sind. Städte müssen eine führende Rolle bei der Umstellung auf erneuerbare Energien spielen. Es ist möglich, Städte zu verändern. Lancaster in den USA wurde durch Investitionen in Solarenergie zu einer grünen Boomtown.

05:01
😀 Vom Wald in die Stadt - Energiekreisläufe

In Wunsiedel in Deutschland wurde ein Energiesystem geschaffen, das Forstwirtschaft mit erneuerbarer Energie verbindet. Überschüssige Energie wird in Holzpellets umgewandelt, die zur Strom- und Wärmeerzeugung genutzt werden. In Kopenhagen nutzt ein neu gebautes Viertel Abwärme aus Kühlung für die Nahwärmeversorgung. So entstehen lokale Energiekreisläufe.

10:02
😀 Oslo will bis 2030 klimaneutral sein

Oslo möchte bis 2030 klimaneutral werden. Durch den Ausbau von Solarenergie und E-Mobilität wurden bereits Fortschritte erzielt. Auch die Bauwirtschaft soll klimaneutral werden. Unternehmen und Bürger müssen aktiv werden. Hege Schøyen Dillner setzt sich als Managerin für Klimaziele ein.

15:05
😀 Altes mit Neuem verbinden

In Norwegen wird versucht, beim Bau neuer Gebäude so viele Elemente wie möglich wiederzuverwenden. In einem Pilotprojekt in Oslo wurde ein modernes Bürogebäude mit Altbauteilen kombiniert. Mieter schätzen das Konzept. Es gilt, mit weniger Ressourcen auszukommen und Kreisläufe zu schaffen.

20:06
😀 Grüne Energie über die Nordsee

Norwegen und Großbritannien haben ihr Stromnetz über ein Seekabel in der Nordsee verbunden. So kann überschüssige Wasserkraft aus Norwegen nach Großbritannien exportiert werden. Großbritannien ist führend bei Offshore-Windkraft. Eine solche Verbindung erhöht die Energiesicherheit.

25:08
😀 Künstliche Inseln für grüne Energie

Um die Energienetze zu stabilisieren, müssen große Speicherkapazitäten geschaffen werden. Wasserstoff hat dabei großes Potenzial. Es sollen künstliche Energieinseln in der Nordsee entstehen, die Windparks bündeln und Wasserstoff produzieren können. Sie können als Knotenpunkte dienen.

30:08
😀 Mit Sonnenlicht Kraftstoffe herstellen

Wasserstoff kann auch weiterverarbeitet werden, um daraus Kraftstoffe herzustellen. Mit künstlicher Photosynthese kann Wasserstoff effizient aus Sonnenlicht gewonnen werden. Dies wird weltweit erforscht, auch in Berlin. So könnten saubere Kochbrennstoffe für Entwicklungsländer produziert werden.

35:10
😀 Batterien und Halbleiter als Schlüssel

Für die Speicherung von Energie sind auch leistungsfähige Batterien essenziell. In Singapur wird an Recyclingverfahren für Lithium-Ionen-Batterien geforscht. Halbleiter sind die Basis moderner Technologien und können aus verschiedenen Materialien hergestellt werden.

40:10
😀 Innovation für die Energiewende beschleunigen

Viele Technologien für die Energiewende müssen schneller eingesetzt werden. Dafür ist eine engere Zusammenarbeit von Forschung und Industrie nötig. Künstliche Photosynthese zum Beispiel hat großes Potenzial, Wasserstoff kostengünstig herzustellen. Der Erfolg hängt davon ab, Lösungen in großem Maßstab umzusetzen.

Mindmap
Keywords
💡renewable energy
Renewable energy refers to energy from sources like wind, solar, geothermal, biomass etc. that replenish naturally. The video discusses transitioning energy systems like cities and industries to rely completely on renewable sources and create a circular economy. For example, Lancaster city in California shifted its municipal buildings to use solar energy and Wunsiedel in Germany linked its forestry, agriculture and energy sectors in a sustainable loop.
💡circularity
Circularity refers to the concept of resources flowing in a closed loop with minimal leakage or wastage. The video talks about applying this to energy systems by efficiently harnessing locally available renewable sources, using waste products, and reusing energy multiple times through sector coupling of electricity, heating, cooling, transport etc. For example, excess solar and wind energy in Wunsiedel is stored by converting forestry waste biomass into wood pellets which can then be burned for district heating needs.
💡sector coupling
Sector coupling refers to the integration of energy supply and demand across different sectors like electricity, heating, cooling, transport etc. to improve overall efficiency. The Nordhavn project in Copenhagen demonstrates this by using waste heat from commercial cooling compressors to heat nearby buildings. The video emphasizes that optimal renewable energy systems require intelligent sector coupling.
💡carbon neutrality
Carbon neutrality refers to achieving net zero carbon emissions by balancing emissions with carbon removal or offsets. Cities like Oslo aim to become carbon neutral by reducing energy consumption, switching heating and transport to renewable electricity, constructing zero emission buildings etc. Companies like Hege's are also committing to carbon neutral targets.
💡energy security
Energy security means having reliable access to affordable energy. Countries can improve energy security through better transmission infrastructure and by integrating their energy grids with neighbors. For example the North Sea wind grid allows countries like Norway and UK to export or import clean electricity as needed.
💡electrolysis
Electrolysis uses electric current to split water into hydrogen and oxygen. As hydrogen is a versatile energy storage medium, the video discusses using renewable electricity for electrolysis to produce green hydrogen which can then power vehicles or be converted into synthetic fuels.
💡hydrogen economy
A hydrogen economy relies on hydrogen gas rather than fossil fuels as the main energy carrier. Green hydrogen produced by electrolysis using renewable electricity has immense potential for storing and transporting energy. The video envisions an emerging hydrogen ecosystem spanning production, storage, transmission etc.
💡artificial photosynthesis
Artificial photosynthesis aims to mimic plant photosynthesis using engineered semiconductor materials to convert sunlight, water and CO2 into energy carriers like hydrogen or other fuels. The video considers artificial photosynthesis as among the most promising cutting edge renewable energy technologies currently being researched.
💡energy islands
Energy islands are planned hubs with interconnected infrastructure to transmit and store offshore wind energy. They will link North Sea countries through subsea cables and balance supply and demand regionally. Energy islands exemplify the large-scale infrastructure envisaged to enable viable renewable energy systems.
💡global collaboration
The video conveys that global collaboration between researchers, industries, regulators and communities is imperative to accelerate innovation, systemically transform sectors and equitably disseminate solutions. It suggests integrated approaches like virtual round-the-clock materials discovery through international laboratory networks.
Highlights

Neural networks are revolutionizing natural language processing with their ability to understand language in context.

Transformers have become the dominant architecture for NLP models due to their ability to capture long-range dependencies.

Pre-trained language models like BERT and GPT-3 have transferred NLP to a new level by providing universal language representations.

Few-shot learning allows fine-tuning models on small datasets, greatly expanding their capabilities.

Cross-lingual language models enable transfer learning across multiple languages.

Multimodal learning combines language, vision and other modalities to understand the world better.

Language models are being applied to a wide range of NLP tasks like translation, summarization and question answering.

Ethics is becoming increasingly important as powerful NLP models can amplify biases.

Causal language models aim to understand causality and perform reasoning.

Memory-augmented networks equip models with external memory to learn more complex functions.

Active learning allows models to interactively query unlabeled data points.

Synthesizing text, code, audio and video is an emerging NLP capability.

Training giant models requires optimization innovations like sparse attention and mixture of experts.

Quantifying uncertainty allows NLP models to identify their own weaknesses.

NLP is advancing rapidly, but still faces challenges like grounding language in the real world.

Transcripts
Rate This

5.0 / 5 (0 votes)

Thanks for rating: